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Human Performance of Novice Schedulers for Complex
Spaceflight Operations Timelines
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Objective: Investigate the effects of scheduling task
complexity on human performance for novice schedulers
creating spaceflight timelines.

Background: Future astronauts will be expected to self-
schedule, yet will not be experts in creating timelines that meet
the complex constraints inherent to spaceflight operations.

Method: Conducted a within-subjects experiment to
evaluate scheduling task performance in terms of scheduling
efficiency, effectiveness, workload, and situation awareness
while manipulating scheduling task complexity according to the
number of constraints and type of constraints.

Results: Each participant (n = 15) completed a set of
scheduling problems. Results showed main effects of the
number of constraints and type of constraint on efficiency,
effectiveness, and workload. Significant interactions were ob-
served in situation awareness and workload for certain types of
constraints. Results also suggest that a lower number of con-
straints may be manageable by novice schedulers when com-
pared to scheduling activities without constraints.

Conclusion: Results suggest that novice schedulers’ per-
formance decreases with a high number of constraints, and
future scheduling aids may need to target a specific type of
constraint.

Application: Knowledge on the effect of scheduling task
complexity will help design scheduling systems that will enable
self-scheduling for future astronauts. It will also inform other
domains that conduct complex scheduling, such as nursing and
manufacturing.

Keywords: scheduling, computer-supported collaborations,
analysis and evaluation, multivariate analysis

Précis: Evaluated novice schedulers’ per-
formance as a function of number of constraints
and different types of constraints pertinent to
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spaceflight operations. Differences detected in
efficiency, effectiveness, workload, and situa-
tion awareness will help design future sched-
uling systems and aids.

INTRODUCTION

Planning and scheduling the activities re-
quired to operate the International Space Station
(ISS) takes a team of highly trained and expe-
rienced planners weeks to complete (Dempsey,
2018). The task of planning and scheduling is
complex because there are a myriad of re-
quirements, resources, and constraints that must
be satisfied. Failure to do so leads to schedules
that are infeasible and potentially unsafe, lead-
ing to loss of mission objectives or threatening
the health and safety of astronauts. Furthermore,
there are often too many activities and in-
sufficient time for astronauts to complete them
all. Thus, ISS planners leverage sophisticated
software tools to manage all the constraints that
dictate when activities can be scheduled for
astronauts. The successful timelines produced
govern an astronaut’s day-to-day life down to
the minute and they must adhere to this schedule
of activities to ensure mission success. Any real-
time slips in schedule are quickly adjusted by the
planners who, as ground controllers, are in
constant communication with the crew.

Future astronauts on long duration exploration
missions (LDEMs) will not have the same con-
tinuous, real-time communications with ground
controllers that is available today. As such, as-
tronauts will be expected to perform more
autonomously—managing, prioritizing, and re-
scheduling their own schedules as they see fit (i.e.,
crew self-scheduling). However, astronauts are
not experienced ISS planners, and these novice
schedulers are expected to find self-scheduling
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a difficult task to complete due to the complexity
of spaceflight scheduling. The challenge with
crew self-scheduling is twofold: self-scheduling
should not be burdensome to astronauts, and re-
sulting timelines need to abide by the multiple
requirements, resources, and constraints imposed
by the mission. While it has been observed that
self-scheduling is feasible in operational-like
settings (Marquez, Hillenius, Healy & Silva-
Martinez, 2019; Marquez et al., 2017), crew
self-scheduling needs to be completed easily
and quickly. However, “easily and quickly” is
not necessarily compatible with scheduling task
complexity that exists in human spaceflight
missions.

Scheduling task complexity is driven by
factors such as the number of activities to be
scheduled with constraints. Spaceflight con-
straints range from simple to sophisticated
(Dempsey, 2018). For example, some activities
must be done exactly at a predetermined time,
while other activities require particular resources
(e.g., power and equipment) to be completed.
Often, spaceflight activities have multiple con-
straints. The collection of activities and their
associated constraints determines how hard it is
to schedule and achieve an optimal timeline.
There has been little research investigating the
performance impacts of scheduling task com-
plexity resulting from a lack of understanding of
scheduling task performance and supportive
mitigations to prevent nonoptimal performance.
Our recent research (Lee et al., 2021) explored
performance in scheduling and identified that
activity constraints can impact task complexity
and subsequently, associated performance. In
the present study, human scheduling perfor-
mance is investigated as a function of scheduling
task complexity, specifically addressing the type
and number of constraints as key factors.

Background: Scheduling, Complexity, and
Human Performance

In the last several years, while research has
been conducted that focuses on enabling in-
creased flight crew autonomy for future LDEMs,
there is comparatively little within the domain of
autonomy in mission activity scheduling. Some
research has emphasized solutions that support

scheduling efficiency, such as decision support
systems (e.g., Mishra et al, ., 2019) and algo-
rithms for increased scheduling efficiency (e.g.,
Bu et al.,, 2016). Our previous research has
centered around the design and usability of
scheduling tools for self-scheduling in analog
environments (Marquez et al., 2017, 2019) and
in spaceflight (Marquez, Hillenius, Healy &
Silva-Martinez, 2019). Others have explored
the positive behavioral effects on crew with
scheduling autonomy (Kanas, 2015; Roma et al.,
2011). However, none of this research provides
insight into the specific components of sched-
uling task complexity that exist in spaceflight
operations and their effect on a scheduler’s
performance. Research is therefore required to
address the current gap in the literature of
complexity drivers of self-scheduling and as-
sociated mitigations and supportive mechanisms
that enable crew members to self-schedule ef-
fectively and efficiently.

Self-scheduling research outside of the spe-
cialized spaceflight domain was also considered
to further understand if self-scheduling com-
plexity drivers and associated performance had
been explored in other domains. Research on
activity scheduling in wider domains, including
surgery, nursing, construction, manufacturing,
and power grids, provides some insight into the
complexity drivers of scheduling and associated
scheduling performance. There is a widely
recognized desire to create an “optimal plan” in
each domain, usually measured by domain-
specific criteria of effectiveness (e.g., “how
quickly patients are treated by nurses?”’) and
efficiency (e.g., “are resources fully utilized?”;
Erdogan & Denton, 2011). The complexity of
the scheduling task is acknowledged within
these varied domains and attributed to multiple
levels of decision making and constraints be-
tween tasks (Argenziano et al., 2020). However,
due to domain-specific complexity, research has
dominantly focused on resolving the scheduling
problem through various supportive mecha-
nisms, including the development of modeling
programs and automated scheduling tools (Chau
et al., 2004). Some investigations in medical
domains, including nursing and surgery, have
focused on allowing self-scheduling as a solu-
tion, which has had a positive impact on
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wellbeing and satisfaction but provides no
conclusive information on ensuring an optimal
schedule as an outcome (Russell et al., 2012;
Zhu et al., 2019). Additionally, self-scheduling
nursing implementations have failed when team
structures broke down and individuals priori-
tized their personal schedules over the success of
the entire nursing staff (Bailyn et al., 2007).
Research on activity scheduling across do-
mains has received an inconsistent focus on
what individual factors drive complexity in the
scheduling task and how they impact the crea-
tion of an optimal schedule. There is, therefore,
a gap in understanding relating to complexity
drivers for the planner, and the potential barriers
to improving self-scheduling performance. Zhu
et al. (2019) recently conducted a review of
operating room planning and surgical case
scheduling in which they discuss the literature
around different types of constraints and prob-
lem features. One of the key types of constraints
identified in the review was resource manage-
ment, where a given resource (e.g., operating
rooms) has a limited number, resulting in dif-
ficulties in scheduling and ultimately increasing
patient waiting time and hospital-staff overtime.
Commercial planning solvers were found to be
insufficient to handle these types of constraints,
requiring the development of genetic algorithms
to find approximately optimal solutions in
a timely manner for surgical scheduling (Erdem
et al., 2012). Other types of constraints included
the minimum/maximum time between two dif-
ferent events, such as requiring time between
surgeries for disinfecting the operating rooms
(Marques et al., 2012). Within the surgical do-
main, researchers have focused on different
ways of minimizing the time between surgeries
by scheduling patients with the same infection
sequentially (Cardoen et al., 2009) or blocking
infectious and noninfectious cases at different
times (Hashemi Doulabi et al., 2016), though
these techniques may not be broadly applicable
to other domains. In addition to constraints,
many planning techniques take the priority of
the events into account. Castro and Marques
(2015), for instance, divided their surgical
activity scheduling into three priority levels
based on the urgency and severity of the op-
erations to be performed. Their scheduling

algorithm prioritized the most urgent surgeries,
scheduling them first, and worked down the
priority list. Using real-life data as a case study,
they were able to improve the occupation rate
of their operating rooms and schedule more
surgeries.

Overall, the lack of a consistent body of re-
search into self-scheduling across domains has
limited our understanding of how performance
is affected by scheduling task complexity. The
existing literature has investigated activity
planning and scheduling with varied types and
amounts of constraints, making it difficult to
determine how each constraint influences per-
formance. As a result, prior information from
other domains has a limited contribution to
understanding self-scheduling performance for
long-duration spaceflight missions. In this re-
search, we present a controlled, systematic
evaluation of the individual types of constraints
that are operationally relevant to spaceflight. To
address some of the gaps in the literature, we
examine human performance and resulting
performance-influencing  factors, including
workload and situation awareness, of novice
schedulers as a function of scheduling task
complexity.

METHOD
Design

We investigated the effect of scheduling task
complexity on scheduling performance by pre-
senting participants with different types and
numbers of constraints in a scheduling problem.
We utilized a within-subject 4 x 2 experimental
design which resulted in eight constrained
scheduling problems and one unconstrained
(baseline) scheduling problem for nine total
problems. The two independent variables we
manipulated were type of constraint, with four
levels, and number of constraints with two
levels, “low” (33% of activities to be scheduled
with constraints) and “high” (66% of activities to
be scheduled with constraints). A constraint was
associated with an activity and defined a limi-
tation or requirement that had to be met when the
activity was scheduled. The #ype of constraints
selected for this study are among those that
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currently exist in human spaceflight operations.
Four types of constraints were presented:

® Time Range Constraint (TR) limits the time of day
an activity can be scheduled (e.g., Activity A must
start no earlier than 0900 and end no later than
1030);

® Requires Constraint (R) states that the activity
needs to have a particular, static resource available
(e.g., Activity requires communication availability);

® (Claim Constraint (CL) describes a specific piece
of equipment required for a particular activity or
set of activities (e.g., Activities A and B both
claim a treadmill, therefore, cannot be scheduled
at the same time);

® Ordering Constraint (O) describes when an ac-
tivity should be scheduled in relation to another
activity (e.g., Activity A must be scheduled before
Activity B).

Only one type of constraint was shown in any
individual scheduling task (i.e., trials did not have
multiple types of constraints). Scheduling prob-
lems either had a low number (33%) or a high
number (66%) of constraints. The baseline
problem was the first trial for all participants and
contained no constraints. A Latin square de-
termined the order for the remaining eight trials.

Participants

A power analysis was performed to determine
the necessary sample size for a within-subject
analysis with repeated measures and a very
strong correlation among the repeated measures
(r = 0.80; Evans, 1996). Using a medium effect
size of f = 0.25 (Erdfelder et al., 1996), error
probability (o) of 0.05, and power (1 — ) of 0.80
(Fritz & MacKinnon, 2007), the present
framework required 16 subjects to detect within
factors effects. Our previous research (Lee et al.,
2021) indicated an effect size between medium
and large, giving us confidence that 15 subjects
would be sufficient for this study.

Fifteen individuals (seven females and eight
males) volunteered for the experiment. While
astronaut participants were not feasible, college
educated participants were selected as a proxy
for novice schedulers. Participants’ ages ranged
from 18—65. All held a minimum of a bachelor’s

degree, reported not to be color blind, and had
previous experience using computer tablets. All
were novice to the scheduling task and sched-
uling platform; “novice” was defined as having
no current professional experience of scheduling,
either as the main focus (e.g., mission scheduler)
or as part of a current job role (e.g., project timeline
manager). Demographics were collected on par-
ticipants’ experience with scheduling to ensure
this criterion was met. Participants were recruited
through advertisements requesting volunteers who
met specific selection criteria. The study was
approved by the NASA Ames Institutional Re-
view Board (HRII 20-07).

Equipment and Materials

The experiment was administered remotely
due to restrictions resulting from the COVID-19
pandemic. As such, participants were required to
provide their own hardware: an iPad with access
to Wi-Fi and a computer with microphone,
speaker, and video camera. Participants accessed
the scheduling platform, known as Playbook
(Marquez et al., 2013; Marquez et al., 2017;
Marquez, Hillenius, Zheng, et al., 2019) via iPad
web browser; instructions and questionnaires
were administered via computer web browser.
The proctor ran a custom software platform that
was developed to execute Playbook experi-
mental trials and was used to collect the data
(Kanefsky et al., 2018). Video conferencing was
used on the computer for remote collaboration
and to record the session.

Playbook

Playbook is a mobile, web-based scheduling
software used to enable crew self-scheduling. In
Playbook (Figure 1), the timeline view displays
time horizontally from left to right with each
crewmember having their own row and their
own activities to be executed chronologically.
An activity is displayed as a colored block with
the length of the block directly related to the
duration of the activity. Flexible activities
(marked with a white dot) can be manipulated
(i.e., scheduled and assigned by the user), and
inflexible activities are fixed in time and cannot
be moved. An activity may or may not have an
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associated constraint. If a constrained activity is
scheduled and the constraint condition is not
met, the activity is marked with a red outline
denoting a constraint-based violation (Figure
1(d)). Overlapping activities are also flagged
as a violation. For this experiment, all flexible
activities had a scheduling priority (high, me-
dium, or low priority). The task list view pro-
vides a list of the flexible activities and includes
additional information such as priority level and
associated constraints. The scratchpad facilitates
the ability to move activities between the task
list and the timeline and is located near the top of
the Playbook interface (Figure 1(b)).

Scheduling Task

Participants were presented with a mostly
empty timeline created for a one-day period.
(For detailed description of activities, see
Supplementary Material.) Similar to current
astronaut schedules, part of the timeline already
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had inflexible scheduled activities, such as sleep
and meals. Twenty-four flexible activities were
positioned in the task list view at the beginning
of each experimental trial; each activity had
a priority (High, Medium, Low). Participants
were required to select activities from the task
list to move to the scratchpad, and then schedule
them into the timeline (see Figure 1). There were
no restrictions on the number of movements of
each activity. More activities were listed in the
task list than were possible to schedule to force
participants to make a choice between priorities.
Participants were trained to schedule by activity
priority so that any activity left unscheduled
should not be a higher priority than tasks that
were scheduled. Participants were instructed to
work as quickly as they could and schedule as
many activities as possible without overlapping
activities, which would create a violation. If
a scheduled activity’s constraint was not met,
a constraint-based violation would also appear
(see Figure 1(d)). Participants were also
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Figure 1. Playbook user interface, with gray inflexible activities, blue activities to be scheduled, and turquoise
“COMM?” availability depicted. Participants start with the initial plan (a) with only inflexible activities scheduled. From
the task list (b), flexible activities can be moved to the scratchpad, where they are stored until the participant places the
activities onto the timeline (c). If the participant creates a violation (d), the activities in violation are flagged with red
outlines.
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instructed to not to leave any violations in the
timeline at the completion of the trial.

Measures

Dependent variables were selected based on
findings from a pilot study (Lee et al., 2021).
Task performance variables measured efficiency
and effectiveness. The total time spent (referred
to time on task) completing the scheduling task
was recorded in minutes and used to infer ef-
ficiency. The number of constraint-based vio-
lations that were created by participants over the
course of the scheduling task was used to
measure effectiveness. Constraint-based viola-
tions were recorded regardless of whether the
violation was subsequently resolved. As the
baseline condition did not require activities with
constraints to be scheduled, this condition was
removed from the analysis of violations. In order
to minimize individual differences and varied
scheduling strategies (as seen in Lee et al.,
2021), participants were asked to schedule
quickly.

Situation awareness (SA) was also captured
to provide insight into participants’ knowledge
of the environment and comprehension of re-
quirements. Previous spaceflight research (Lee
et al., 2021; Edwards et al., 2021) indicated that
several critical components of effective sched-
uling are not relayed during formal training but
instead come from experience. Experienced
schedulers are aware of nonformal constraints,
such as knowledge of physical space/layout or
crew preference, and integrate this knowledge
with their mental models when building
schedules. Given that astronauts are not expe-
rienced ISS planners, understanding the level of
SA a novice scheduler achieves can be used to
identify barriers to establishing good SA and to
inform the development of countermeasures to
enhance SA for novice schedulers. At the end of
every trial, participants were asked to respond to
three SA-related questions, like the Situation
Present Assessment Method (SPAM) technique
(Durso et al., 1995), which had been modified
for this study (Edwards et al., 2021). In line with
the SPAM technique, participants were in-
structed to answer the SA questions as quickly
and accurately as they could from what they

remembered, though they could refer to the
completed schedule, if desired. The “quickly
and accurately” instruction was meant to address
the speed-accuracy tradeoff. Someone who has
a good awareness of the situation can answer
questions quickly and easily from either mem-
ory or from within the display in comparison
with someone who has not built that awareness.
An accurate response alone is not necessarily
meaningful; quickly and accurately indicates
sufficient SA, while accurately with a long re-
sponse time indicates the knowledge was not
readily available.

After completing the SA questions, partic-
ipants were asked to rate their workload on the
NASA Task Load Index (NASA-TLX; Hart &
Staveland, 1988). The traditional scale (1-100)
was used. A pair-wise comparison questionnaire
for the NASA-TLX subscales was also collected
to identify the relevant weighting of the sub-
scales to the overall NASA-TLX measure. This
measure was selected to compare relative per-
ceived workload per participant.

Protocol

Individuals who expressed interest in vol-
unteering for the study were screened by phone
to ensure they met the selection criteria. In-
formed consent forms were electronically
signed, and demographic information was col-
lected through an online form. On the day of the
experiment, participants were given a standard-
ized brief regarding the purpose of the study.
Participants then took part in a training session,
which included a video and four practice
scheduling problems where they were asked to
act as an astronaut tasked with developing
schedules for oneself and one’s crewmates. A
nine-question competency check was conducted
to verify participants were sufficiently trained.
To take part in the experiment, participants were
required to achieve a minimum of 77% (7/9
questions). A short break was provided be-
tween training and the experimental trials. After
each trial, workload and SA questions were
administered; a post experiment questionnaire
and debrief was administered at the end of the
experiment. Total participation time was ap-
proximately 2.5 hours.
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RESULTS

Nonparametric analyses were used for sta-
tistical comparisons for most metrics. For our
repeated-measures, Friedman’s ANOVA was
used; post-hoc comparison tests were conducted
with Wilcoxon signed-rank tests. A series of
four Wilcoxon tests were conducted to in-
vestigate the differences in violations between
low (33%) and high (66%) number of con-
straints, for each type of constraint. Bonferroni
correction was applied to create a corrected
significance level of p = 0.0125.

When Friedman’s analysis is reported, the
main effect of number of constraints (holding
type of constraint constant) is first reported,
followed by the exploration of a main effect of
type of constraint (holding number of con-
straints constant). For multiple comparisons,
Bonferroni corrections were applied to set the
appropriate significance level (e.g., four com-
parisons, significance level set at p < 0.0125).
When a dependent variable met the assumptions
for parametric data analysis (such as time on task
and NASA-TLX score), repeated-measures
ANOVA and pairwise comparisons for post-
hoc tests were used.

Table 1 summarizes the descriptive statistics
for the data analyzed. One dependent variable,
time on task, met assumptions for parametric
data analysis and we report mean (M) and
standard deviation (SD) for each condition. All
other variables did not meet parametric as-
sumptions and we report median and interquartile
range (IQR). Data from two trials (from different
participants) were removed from the dataset due
to technical issues collecting measures.

Performance-Influencing Factor:
Self-Reported Workload

Friedman’s ANOVA was utilized to enable
a comparison analysis between the baseline and
experimental conditions, followed by Wilcoxon
signed-rank tests for post-hoc comparisons.
Analysis of weighted NASA-TLX scores in-
dicated no significant difference in self-reported
workload between the baseline and the low
number of constraints conditions. However,

a significant difference was detected between the
baseline and the high number of constraints
conditions (y°(4) =21.11, p <0.001, W = 0.35).
Under this condition, workload was rated sig-
nificantly lower in the baseline condition com-
pared to most other constraint conditions: O (Z =
—2.96, p < 0.005), CL (Z = —3.18, p = 0.001),
and TR (Z = —2.48, p < 0.05), but not R (Z =
—0.22, p > 0.05). See Table 1 for descriptive
statistics.

An ANOVA analysis was used to evaluate the
self-reported workload. A parametric analysis
was utilized because NASA-TLX is considered
a robust measure (Hart, 2006) and parametric
analysis assumptions were statistically met. A
significant main effect of the number of con-
straints was found on workload (F(1, 12) =6.16,
p < 0.05, 77[27 = 0.34); on average, reported
workload increased between low (M = 46.80)
and high (M = 50.04) constraint conditions. In
addition, a significant main effect of the yype of
constraint was identified (F(3, 36) = 2.91 p <
0.05, 0, = 0.2). Post-hoc pairwise comparisons
revealed no significant differences, although
a finding that workload was higher in the CL
condition (M = 51.01) than the R condition (M
= 42.67) approached significance (p = 0.09).
Finally, a significant interaction was found
between number of constraints and type of
constraint (F(3,36)=3.06, p <0.05, ;7127 =0.20).
This interaction causes the reported workload
to be differentially affected by type of con-
straint in the high number of constraints
condition compared to the low condition. Tu-
key post-hoc tests showed that reported
workload was significantly higher for TR in the
high condition compared to the low condition
(p = 0.0008), while the other three constraints
were unaffected. In the high constraints con-
dition, pairwise comparisons also showed that
R had significantly lower workload than O (p =
0.0118) and TR (p = 0.0012).

Performance-Influencing Factor:
Situation Awareness

Response times to SA questions were not
normally distributed, and thus, nonparametric
analyses were used to identify statistical
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differences. Initial analyses explored all accurate
responses, regardless of response time. De-
scriptive statistics for the percentage of correct
responses and the average response times are
provided in Table 1. Baseline data was excluded
from this analysis.

No statistical difference was detected with
respect to SA percentage of correct responses as
a function of #ype of constraint or number of
constraints. Overall, 75% of SA questions were
answered correctly. There was, however, a statis-
tically significant difference in SA response times
within the high number of constraints condition
(*(3)=12.50, p <0.01, W = 0.2), but not for low
number of constraints condition (y*(3) = 6.28, p =
0.08). For the high number of constraints con-
dition, accurate SA response times were longer for
O compared to TR (Z=—3.04,p<0.01)orR (Z=
—3.04, p<0.01) and longer for CL compared to R
(Z=—1.98, p <0.05).

Similar to the SPAM technique, response
times greater than 40.5 seconds were re-coded as
incorrect. The assumption is that participants
had not gained sufficient SA to answer the
question, but instead were relying on access to
the completed schedule to answer questions. As
a result, 20 individual data points (6% of the
dataset) were removed and analyses re-run. With
this revised dataset, no statistical difference was
detected with respect to SA percentage of correct
response as a function of number of constraints.
A statistically significant difference in percent
correct was detected for the high number of
constraints conditions (y*(3) = 15.63, p < 0.001,
W = 0.4), and approached significance for low
number of constraints (x*(3) = 6.85, p = 0.08).
For the high number of constraints conditions,
the percent correct was lowest for O compared to
TR (Z=-2.88,p<0.0l)orR(Z=-292,p<
0.01).

No statistical difference was detected in the
response time necessary to accurately answer
SA questions for either of the independent
variables. While initial analyses detected a dif-
ference in response times for high number of
constraints, this effect disappeared once a time
limit was placed on accurate responses. Seventy
percent (14/20) of the individual data points that
exceeded the time limit came from the O
constraint.

Efficiency: Time on Task

Time on task met assumptions for parametric
data analysis, and hence, ANOVA results and
Bonferroni pairwise comparisons are reported.
Descriptive statistics (Table 1) suggest that the
baseline condition (where no activities con-
tained constraints) was completed faster than all
other experimental conditions except R-low and
CL-low, which were on par. To detect significant
differences in time on task between the baseline
condition and experimental conditions, eight
paired samples t-tests were conducted. Using
a Bonferroni correction (p < 0.00625), only two
comparisons were significant. On average,
participants took less time to complete the
baseline condition in comparison to O-high (p <
0.001) and TR-high (p = 0.001) conditions.

For the experimental conditions (Figure 2),
a significant main effect of the number of con-
straints was found on time on task (F(1, 12) =
28.86, p < 0.001, ;712, = 0.7), with the high
condition (M = 6.19 minutes) on average taking
longer to complete than the low condition (M =
4.98 minutes). In addition, a significant main
effect of the yype of constraint was identified
(F(3,36)=6.17,p<0.005, 5, = 0.34). Post-hoc
Bonferroni pairwise comparisons revealed that
participants took significantly longer to com-
plete TR trials than R trials (p < 0.01). TR trials
were also longer than CL trials, which ap-
proached significance (p = 0.06). No significant
interaction effects were identified.

Effectiveness: Violations of
Constraint-Based Rules

Using Wilcoxon signed ranks tests and ad-
justing the significance level, the effect of
number of constraints were analyzed for each
constraint type. Descriptive statistics (Table 1)
suggest that there were fewer violations created
when there were fewer constraints. For each type
of constraint, there was a significant difference
in the number of violations between the low and
high number of constraints: O (Z = —2.84, p =
0.005), CL (Z = —3.36, p = 0.001), TR (Z =
—2.61,p<0.01)and R (Z = —3.12, p < 0.005).
Results indicate a significant main effect of the
number of constraints on activities to be
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Figure 2. Time to complete the scheduling task (time on
task), in minutes, by type of constraint and number of
constraints. Data points are the means, and the error bars
are the standard deviation.

scheduled on the number of constraint-related
violations, with more violations created for the
high condition (Figure 3). When assessing the
effect of fype of constraint, the number of vi-
olations was significantly different for both the
low number of constraints condition (y*(3) =
14.85, p <0.005, W = 0.33) and the high (y*(3) =
11.93, p < 0.01, W = 0.31). For the low con-
dition, the number of violations created in R
trials was significantly less than violations in CL
trials (Z = —3.11, p < 0.005) and TR trials (Z =
—3.14. p < 0.005). Fewer violations in R
compared to O trials approached significance (Z
= —2.03, p = 0.04) (in accordance with the
Bonferroni corrected significance level of p =
0.0125). In the high condition, violations in the
CL condition were significantly higher than R (Z
=—2.90, p <0.005) and O trials (Z= —2.39,p <
0.05).

DISCUSSION

A within-subjects design was used to in-
vestigate the effect of number of constraints and
type of constraint on human performance when
creating a schedule. We examined workload,
situation awareness, efficiency and effectiveness
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Figure 3. Number of constraint violations created
during the scheduling task by type of constraint and
number of constraints. Data points are the means, and the
error bars are the standard deviation.

of novice schedulers performing this task. Per-
formance efficiency was measured by how long
it took participants to create a schedule, and
performance effectiveness was inferred from the
number of violations participants created in the
process of scheduling activities. This study con-
tributes to the current research gap of under-
standing complexity drivers in activity scheduling
and associated scheduling performance.
Reported workload was affected by #ype of
constraint as well as number of constraints to be
scheduled. Compared to baseline, participants
reported workload to be significantly greater in
the high number of constraint condition but not
significantly greater in the low number of con-
straint condition, suggesting that the number of
constraints affected workload regardless of type
of constraint. The lack of significant difference
in reported workload between baseline and the
low constraint conditions also suggests that
participants found this condition manageable,
and the increased task complexity was not in-
fluential on perceived workload. A main effect
of type of constraint on reported workload was
also found, although subsequent comparisons
did not find significant differences between the
four constraint types, suggesting a smaller effect
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on reported workload compared to number of
constraints. Nonetheless, more constraints re-
sulted in higher reported workload. This is
consistent with cognitive resource theories,
where more resources are required for harder
tasks (Smit et al., 2004; Ackerman et al., 1984;
Bellenkes et al., 1997). The low constraint
condition may have been tolerated by partic-
ipants with spare capacity remaining, explaining
the lack of significant difference with baseline.
However, the high number of constraint con-
dition demanded more resources of participants
compared to either the baseline or low constraint
condition, resulting in an increased perception of
workload.

The adaptation of the SPAM methodology
was successful in measuring differences in SA
in participants across conditions. Participants
were asked questions that probed their percep-
tion and prediction of elements within the
timeline they had scheduled. Similar to Edwards
et al. (2021) an effect for the type of constraint
was observed for SA response time. Surpris-
ingly, no difference was detected between low
and high number of constraints, though the
effect of constraint type was larger in the latter
condition. This suggests that SA is more greatly
affected by the tyype of constraint as opposed to
the number of constraints. Limitations of SPAM
have been documented in the literature which
may have influenced results, such as speed-
accuracy tradeoffs have been documented in
the literature, and a potential for results to be
biased due to more accurate and faster an-
swering during low workload periods (Endsley,
2021). However, some of these documented
limitations were addressed in the present study
due to the nature of the modified version of
SPAM that was used (see Method section) (e.g.,
Durso et al., (1999)).

Regarding time on task and number of vio-
lations, there were main effects due to the
number of constraints and the type of constraint.
More constraints resulted in more time spent
scheduling and more violations created. While
this result is consistent with Lee et al. (2021) this
experiment shows that this effect is seen re-
gardless of the type of constraint. When par-
ticipants had to schedule more activities with
constraints, the scheduling task became harder

to complete. Having more constraints to meet
resulted in a higher number of total constraint-
based violations created while scheduling. This
implies that novice schedulers sometimes at-
tempt to schedule activities at the times where
the activity is constrained (i.e., creating invalid
schedule).

We provided cues to the participants that
would enable them to identify times where ac-
tivity could be scheduled to meet a constraint.
All the constraints were described in the in-
structions (e.g., “Requires COMM”), which
were always visible on a second browser
during the trial; this same information was
provided in the Task List; and finally, if the
activity was selected in Playbook, the con-
straint description was visible. Participants
may have chosen a trial-and-error approach in
trying to schedule activities with constraints,
leading to more violations as well. In turn,
resolving violations elongated the amount of
time spent creating a schedule that satisfies the
given constraints.

Interestingly, when compared to scheduling
activities with no constraints (i.e., baseline),
performance was comparable to that when
scheduling in the low number of constraints
conditions. There was no significant difference
in how long it took participants to complete the
baseline trial compared to the low constraint
conditions. Similarly, no significant difference
in perceived workload was detected between the
baseline and low number of constraints con-
ditions. Even if participants chose a trial-and-
error approach, requiring an additional physical
act of moving around activities with constraints
and mental challenge of identifying an adequate
violation-free schedule, no significant differ-
ences in reported workload were identified.
Considering these two findings together, our
results suggests that a few constraints does not
significantly impact scheduling performance,
nor does it add significant workload.

These results suggest that a scheduling task
with 66% of activities having constraints falls
under the hard problem category, but not the
over-constrained problem category (Cheeseman
et al.,, 1991). As Cheeseman et al. (1991) sug-
gest, under- and over-constrained problems are
easy because there are correspondingly many or
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very few solutions. Hard problems are those in
some critical region of difficulty (which is
problem dependent). Similarly, participants
spent a longer amount of time, effort, and in-
curred more trial-and-error attempting to find
a valid schedule, of which there are a limited
number.

Decreased performance and increased
workload was detected when participants were
asked to schedule more activities with con-
straints (i.e., the high number of constraints
conditions). When there are more constraints to
meet, the problem space (or valid schedule
solutions) becomes smaller, requiring partic-
ipants to spend more time and effort finding
a valid scheduling solution. Essentially, the
possible locations (or start times) in which ac-
tivities can be scheduled is limited, and partic-
ipants spend more time rescheduling multiple
activities to find a valid schedule. In turn, finding
a valid schedule solution in the low number of
constraints conditions is not as challenging to
participants.

Differences in Types of Constraints

While there is an effect due to type of con-
straint, there is mixed evidence to indicate which
constraint was hardest for participants to
schedule. The Time Range constraint was the
hardest for participants to schedule as those trials
took the longest to complete regardless of
number of constraints. Most prominently, there
was a significant interaction between number of
constraints and type of constraint affecting re-
ported workload. Post-hoc comparisons indicate
that the main contributor was the condition
where participants had to schedule activities
where 66% of them had an associated Time
Range constraint (TR-high). For this condition,
participants reported the highest workload. This
suggests that the increase in constraints affected
the Time Range task complexity greater than
other constraints. The Time Range constraint
required activities to either be scheduled during
a morning or an afternoon two-hour time slot for
any of the three crew member timelines. Par-
ticipants might have found this constraint the
most restrictive (i.e., limited flexibility existed to
schedule these activities with this constraint).

When considering performance effective-
ness, the constraint that led to the most viola-
tions was Claim, particularly for the high
number of constraints conditions. The median
number of violations for 66% Claim (CL-high)
was almost twice that of the other three con-
straint types (Table 1). However, this did not
result in changes in performance regarding
efficiency or workload (though less SA was
developed in comparison to Requires con-
straints). Solving for the Claim constraint
required participants to understand which
other activities claimed the same resource.
This required participants to consider the
scheduling of at most four activities at once
so that they would not be scheduled concur-
rently. While this led to more violations, it did
not increase participant’s reported workload,
nor did it result in longer time to schedule
all activities. Participants may have found it
more challenging to identify ways to meet the
constraint but there was sufficient scheduling
flexibility to accommodate the activities in the
timeline.

The Ordering constraint required participants
to understand how at least two activities were
scheduled. To satisfy this constraint, the activ-
ities must be scheduled in the appropriate order
(e.g., setup activity is before cleanup). Situation
awareness response time for Ordering was
significantly longer compared to Time Range
and Requires. When a response time cutoff was
applied to the dataset, participants’ SA per-
centage of correct response was again signifi-
cantly poorer than Time Range and Requires.
Additionally, the majority of the response times
that were longer than 40 seconds were during the
Ordering trials. These results suggest that SA
was either the lowest or most undeveloped for
Ordering constraint. Interestingly, scheduling
performance (as measured by number of vio-
lations and time on task) was not significantly
affected by poor SA. Overall, while the task of
scheduling activities with this type of constraint
was feasible, it appears that conceptualizing
a mental model of a constraint network may be
challenging for novice schedulers. This is par-
ticularly noteworthy as only a simple constraint
network (just two activities) was used in this
experiment and more complex networks (three
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or more activities) are commonly found in
spaceflight operations.

An interesting trend was identified for only
the Requires constraint condition. For activities
with this constraint, participants were asked to
schedule the activity at a time where the required
resource was available, namely, when there was
sufficient communication availability. While
scheduling performance increased between low
and high number of constraints for the Requires
constraint, workload and SA response time
tended to decrease. One possible explanation for
this trend (and significant interaction for
workload) is that the direct presentation of
communication availability in the user interface
(as seen in Figure 1) allowed participants to
more easily identify where activities could be
scheduled to satisfy the constraint. This would
also explain why performance for Requires trials
are consistently one of the better ones (quicker to
schedule and lower number of violations). The
visual presentation of communication avail-
ability might have been sufficient to decrease
perceived workload in the high constraint con-
dition despite having to do a more challenging
scheduling task.

The mixed results across the type of con-
straints studied may be an indicator that activity
scheduling support strategies differ across the
type of constraints. Descriptions of the con-
straints are not sufficient for novice schedulers.
The trends observed for Requires suggest that
visual aids may be most useful. Time Range and
Claim constraints might benefit the most from
a visual scheduling aid. Finally, Ordering con-
straints may be too challenging for novice
schedulers to develop and internalize a mental
model sufficient to develop situational awareness.

Summary

Overall, this experiment suggests that num-
ber of constraints and type of constraints are key
factors in scheduling task complexity and hu-
man performance for novice schedulers. Effi-
ciency, effectiveness, and reported workload
increase with the number of constraints, though
schedules with a lower number of constraints do
not significantly impact performance in com-
parison to schedules with no constraints.

Differences in situation awareness were detected
for type of constraint, though this appears to be
mainly driven by one specific type of constraint.
While there is a main effect due to type of
constraints based on performance, there is ev-
idence to suggest that the various constraints
affected performance in different manners. The
results imply that novice schedulers adequately
perform scheduling with lower number of
constraints and would benefit from scheduling
aids to minimize the decreased performance
observed with higher number of constraints.

The findings from this study contribute to the
current gap in activity scheduling performance
literature by systematically investigating self-
scheduling in novice schedulers in a controlled,
laboratory environment. Results provide specific
insight into the components of self-scheduling
that can affect workload and scheduling perfor-
mance in crew and may therefore inform the
creation of future mitigation strategies to specif-
ically address the main drivers in self-scheduling
complexity. Thus, this work provides an impor-
tant initial step in enabling future LDEMs.

Future Directions

Future work will focus on investigating if
there are objective measures to detect individual
and strategy differences across participants.
While participants were all given the same
training, it is likely that a few distinct scheduling
strategies emerged. They might provide insight
as to which specific activity constraints were
more challenging to schedule. In turn, this will
inform the development of future scheduling
aids, be it visualizations or planning practices,
for the most challenging constraint types.

Practical Applications

The research results presented contribute to
our understanding of novice schedulers’ perfor-
mance. They help identify areas of scheduling
task complexity, which in turn leads to informing
the type and design of decision aids for schedules.
Results will enable future self-scheduling for
LDEM. Furthermore, results contribute to the
body of knowledge for other complex scheduling
conducted in nursing, surgery, and manufacturing
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domains. Findings suggest the importance of
novices having sufficient time and training to
develop adequate situation awareness regarding
complex constraints.

KEY POINTS

e Changes in human performance was measured as
a function of scheduling task complexity for
novice schedulers.

e A main effect was detected for the number of
constraints and type of constraint for efficiency,
effectiveness, and workload. A significant in-
teraction was detected for workload.

e Novice schedulers adequately perform scheduling
with a lower number of constraints at a level com-
parable to an unconstrained scheduling problem.

e The type of constraints affected performance in
different ways, suggesting targeted scheduling
aids based on constraint type could be effective.
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